
By Jonathan Hsieh

The
Multimodal
Lakehouse

AI-native

https://www.linkedin.com/in/jonathan-m-hsieh/

02

Introduction

The Multimodal Lakehouse is the next-generation Lakehouse for cutting-edge multimodal AI
teams. Unlike the last generation of data lakes, which typically store structured data or
unstructured JSON blobs or logs, it was especially optimized for serving and computing over
multimodal data, such as documents, video, audio, images, and sensor data.

The Multimodal Lakehouse delivers unparalleled scalability and a superior developer experience
to accelerate model development over petabytes of multimodal training datasets, including
feature engineering, storage management, data exploration and analysis, and accelerated
training.

Key Benefits of The Multimodal Lakehouse

01

Unified Open Source Data Foundation for Multimodal Data

The Multimodal Lakehouse builds on the LanceDB and the which is backed by a

robust open source community and proven in production deployments (ByteDance, RunwayML,

MidJourney). It comes with a rich ecosystem of integrations for Python, TypeScript or Java / Scala stacks.

Lance Data Format

02

Faster time-to-market

Equip AI engineers with seamless, scalable compute access and a frictionless developer experience to

accelerate the AI development cycle – from feature engineering to training to evaluation. Before the

Multimodal Lakehouse, AI engineers spent 80% of their time on data infrastructure and 20% on creative

work. With this new tool, AI engineers can spend 90% of their time focusing on high creativity work.

03

Game-changing cost-performance ratio

From cloud-native storage format to compute-storage separated serving infrastructure to heavily S3/

GCS optimized index, the Multimodal Lakehouse can service low-latency, high-concurrency production

traffic directly from inexpensive cloud storage and low-cost interruptable instances (spot/preemptable).

04

Low operational overhead

Stateless serving fleet, declarative pipeline definitions, and single source of truth on cloud object store

eliminate the need for one-off ETL for data conversion into different silos and ensure that services are

easily recoverable.

https://github.com/lancedb/lance

03

Feature creation effort allocation

defining KPIs preparing data building infrastructure feature experimentation integration

expectation

reality

100%0%

Key Components of The Multimodal Lakehouse

The Multimodal Lakehouse, built on the foundations of LanceDB and the Lance format, boosts AI
engineers' productivity and streamlines feature engineering and experimentation. It simplifies
compute scaling for data processing and eliminates the need for multiple systems during
exploratory data analysis, all while maintaining high priority for critical workloads like training.

The AI-Native Multimodal Lakehouse

Notebooks AI / Search Applications

Exploratory Data Analytics Full Text Search Vector Search

Data: Multimodal (Text / Video / Audio / Sensor) Lance Format

Infra: AWS+S3, GCP+GCS, Azure+ABS, Nvidia

04

Data Management: Uniform Open Source Data Foundation

Built on , the Multimodal Lakehouse offers distinct features that are
designed for a multimodal AI feature data layer:

the open-source Lance format

A modern columnar format with uncompromised random read performance

Optimized layout for the mix of tiny fields and wide blob data

Zero-copy schema evolution for feature management

It offers rich integrations into the Python, Java, TypeScript, and Rust ecosystems with an
optimized I/O path to access data with variable modalities and sizes.

Other popular formats treat blob data as second class citizens. Lance and the Lakehouse on top
of it are optimized for exploratory data analysis required for data curation to feed fine-tuning and
model creation workloads.

Lance Web Dataset iceberg / deltalake Parquet

Random Access Fast Local Only Slow Slow

Fast Scan Yes Yes Yes Yes

Schema Evolution
 Inexpensive

(Zero-copy)
 No Support Expensive (Copy)

 Expensive
(Copy)

Multimodal Yes Yes Yes Yes

Search Yes No Support Slow Slow

Analytics Fast No Support Fast Fast

https://github.com/lancedb/lance
https://blog.lancedb.com/the-case-for-random-access-i-o/
https://blog.lancedb.com/lance-v2/
https://blog.lancedb.com/designing-a-table-format-for-ml-workloads/
https://lancedb.github.io/lance/introduction/schema_evolution.html

05

Compute: Feature Engineering

The Multimodal Lakehouse empowers AI engineers to execute feature engineering at scale and
without having to dive deeply into distributed data processing infrastructure. The platform
significantly simplifies feature generation and increases efficiency:

The Multimodal Lakehouse Ray Data Dataflow, Spark

Scale (Cores) 1-100K 1-5K (Actors) 1-100K

Data Processing Checkpoint Built in No Support No Support

Preemption Built in No Support No Support

Ingest Data Easy Easy Easy

Data and Schema Evolution Easy Easy Easy

By declaratively defining features using Python user defined functions (UDFs), the Multimodal
Lakehouse orchestrates feature computation across a large-scale distributed environment,
supporting filtering, checkpointing, preemption, and autoscaling.

import torch
import aspyarrow pa

@udf = = * ** = =
->

(version , memory , num_cpus , cuda) 
(image:) string:

"blip" 16 1024 3 4 True
def bytescaption_udf

tbl. ({ : caption_udf})add_columns "caption_blip"

tbl. (, batch_size)backfill "caption_blip" =10

try:

except:

import the multimodal lakehouse

image_stream io. (image)= BytesIO
pil_image Image. (image_stream). ()= open convert "RGB"

answer generate_caption(pil_image) =
return answer

raise from ValueException() e"problem in UDF"

Load images and prepare for inputs

The Multimodal Lakehouse provides key capabilities that eliminate 90% of the boilerplate
infrastructure needed to manage data processing and feature development at scale.

Managing new features and data feature evolution is dramatically simplified. The Lance table
format enables efficient zero-copy column addition and backfill using UDFs. For newly added
data, the Multimodal Lakehouse jobs can be triggered externally or automatically.

To scale to petabytes of data, the Multimodal Lakehouse dispatches jobs and can run on 100k’s
of cores and schedule GPUs using backend compute engines such as Ray, or runs on an existing
Kubernetes cluster. These can autoscale so that your jobs are done quickly and so that you only
pay for resources while they are in use.

Instead of having to time or schedule feature experimentation jobs behind time-critical
production tasks, jobs can be launched with low-priority allowing automatic preemption and
executed when your expensive committed-use resources (e.g. GPUs) are underutilized.

With the checkpointing feature, you don’t have to worry about jobs losing progress. Instead of
the expensive cost and time wasted having to rerun entire jobs, they can be paused and
resumed when higher-priority training jobs preempt or if there are failures in processing.

Query: Exploratory Data Analysis and Search at Scale

The Multimodal Lakehouse empowers AI engineers to execute feature engineering at scale and
without having to dive deeply into distributed data processing infrastructure. The Multimodal
Lakehouse compute significantly simplifies feature generation and increases efficiency:

Multimodal LakehouseTraditional Data Lake

Full Text Similarity SQL

Hybrid: Vector + Full Text + SQL

PyTorch Eval in Notebook Spark Trino Ray.data

PyTorch Ray.data Eval in Notebook Spark Trino

Training Lake 
(Tfrecord / WebDataset)

Image / Video
on S3 Eval DataWarehouse

ElasticSearch Vector DB Postgres

07

The Multimodal Lakehouse uses , to enable exploratory data analysis
at ascale.

With its unparalleled search and random access capabilities are powered by a rich set of
secondary indexes, including BTree, NGram, Full Text Search, and Vector Indices. The Multimodal
Lakehouse eliminates the need to maintain multiple copies of the same data, each for one
purpose and eliminates the need for expensive ETL to transform multimodal data into for
different types of data exploration and evaluation.

, combined with a distributed cache service,
allows users to scale the system for the traffic instead of the volume of data. LanceDB has been
deployed in some of the most challenging production environments and serving business-critical
applications.

LanceDB as its query engine

The Compute-Storage-Separation Architecture

LanceDB Performance in Production

Max QPS 20K+

Highest Throughput 10+ GB/s vector search traffic

Max Internal I/O 5M+ IOPS from cache fleet

Max Number of Rows 10 Billion Rows

Largest Dataset O(10) Petabytes

Number of Tables Managed O(10M) tables

GPU Indexing 3 Billion Vectors under 3 hours

https://docs.lancedb.com/enterprise/introduction
https://docs.lancedb.com/enterprise/architecture/architecture

08

Integration: Accelerate Training

The Multimodal Lakehouse provides additional value by optimizing the I/O path of training. 
By combining several technical advantages, it offers a best-in-class training data loader.

01

Fast random access

huffling and filtering during training are fast and inexpensive due to fast random access, which simplifies

preparing data for training runs.

02

Large blob storage and API

Large blobs of data are stored in an efficient layout to reduce metadata. A Python File API is provided to

open a File object on each blob without reading the blob in memory.

03

Named Views for Training

AI engineers can use SQL to express the training dataset as named views from joining the raw data and

many other sources. Users can even customize the level of materialization of those views. The

Multimodal Lakehouse PyTorch / Jax data loader can directly scan over those named views, so AI

engineers can self-serve data management.

04

Distributed Cache Fleet

Originally built for LanceDB Enterprise, the Multimodal Lakehouse’s cache fleet can serve 5M IOPS from

NVMe SSDs, significantly improving throughput and reducing S3/GCS API cost during training.

Security

Security is paramount in a data lake. Access control, encryption, and auditing are crucial for
protecting sensitive data. The Multimodal Lakehouse supports BYOC deployments (bring your
own cloud) so you can control policies on how your data is protected. The tool relies on cloud
storage (Amazon S3, Google GCS, Azure ABS) and inherits the access control, encryption, and
auditing capabilities of those systems.

09

The Multimodal Lakehouse deploys helper services, which communicate workload telemetry
data to LanceDB’s control plane via:

Private Service Connect (PSC) on GCP, or

Private Link, a.k.a. VPC Interface service, on AWS, or

User-owned auditable network proxy, that usually has two NICs, one in user

VPC and one in LanceDB VPC

Deployment / Telemetry

Control Plane
K8s

Researcher / WorkScheduler

S3 / GCS

LanceDB
Enterprise

JobsQuery

Private Link

LanceDB VPCCustomer VPC

the ML op

Kuberay

manage

the ML Job (Ray)

Trusted by Leading AI and Infrastructure Companies

Some leading AI companies have used the Lance format and LanceDB, including Databricks,
ByteDance, RunwayML, Midjourney, Character AI, Harvey, Hex, Luma AI, UBS, Bosch, WeRide, and
many more.

Conclusion

The Multimodal Lakehouse is a next-generation Data Lake designed to revolutionize how AI
teams work with multimodal datasets. By leveraging the open-source Lance data format, it offers
a unified, scalable solution for managing multimodal data like text, video, and images. With its
superior performance, cost-effectiveness, and streamlined workflows, the tool empowers teams
to accelerate their AI development cycles and bring innovations to market faster. Trusted by
leading AI companies, the Multimodal Lakehouse is paving the way for the future of AI data
management.

References

LanceDB Enterprise Doc

https://blog.lancedb.com/designing-a-table-format-for-ml-workloads/

Lance v2: A columnar container format for modern data

https://docs.lancedb.com/enterprise/introduction
https://blog.lancedb.com/designing-a-table-format-for-ml-workloads/
https://blog.lancedb.com/lance-v2/

